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The small-gap equations for the stability of Couette flow with respect to non- 
axisymmetric disturbances are derived. The eigenvalue problem is solved by 
a direct numerical procedure. It is found that there is a critical value of 
Q,/Q,(Q,, Q, and R,, R, are the angular velocities and radii of the inner and 
outer cylinders respectively) of approximately - 0.78, above which the critical 
disturbance is axisymmetric and below which it is non-axisymmetric. In  par- 
ticular for RJR, = 0.95, Q,/Q, = - 1, the wave-number in the azimuthal 
direction of the critical disturbance is m = 4. This result is confirmed when the 
full linear disturbance equations are considered, i.e. the small-gap approxima- 
tion is not made. 

1. Introduction 
The stability of a viscous flow between two concentric rotating cylinders 

(Couette flow) was first considered by Taylor (1923). In this classical paper, he 
observed experimentally that the flow becomes unstable at sufficiently high 
speeds of the inner cylinder, the instability yielding a steady secondary motion 
in the form of cellular toroidal vortices (Taylor vortices) spaced regularly along 
the axis of the cylinder; his theoretical predictions were in excellent agreement 
with his observations. 

The linearized problem for the stability of Couette flow with respect to axi- 
symmetric disturbances leads to an eigenvalue problem for the determination 
of the critical speed of the inner cylinder; the latter appears in the form of a 
Taylor number T (based on the speed of the inner cylinder and containing a 
geometric factor representating the curvature effect), which is a function of the 
parameters ,u = Q,/Q,,q = RJR,, and the dimensionless axial wave-number 
a of the disturbance. Here Ql, Q, and R,, R, are the angular velocities and radii 
of the inner and outer cylinders respectively. For the most part, recent theoretical 
work has dealt with the development of more elegant and practical techniques 
for solving the eigenvalue problem and with computations for a wider range of 
parameters than originally considered by Taylor, for example, the effect of gap 
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size and large negative values of p. More general problems which arise from the 
addition of axial or circumferential pressure gradients and/or the addition 
of axial, circumferential, or radial magnetic fields and/or the use of non- 
Newtonian fluids have also been considered. Much, but certainly not all, of this 
work is discussed in a comprehensive treatise by Chandrasekhar (1961); see 
also a brief survey paper by Di Prima (1963). In  all these investigations, the 
stability of the basic flow has been considered only with respect to axisymmetric 
disturbances. 

In this paper we will consider the stability of Couette flow with respect to 
non-axisymmetric disturbances. There are several reasons for considering this 
problem. First, from a purely mathematical point of view such an investigation is 
necessary in order to complete the analysis of the stability of Couette flow. 
(See Lin 1955.) 

Secondly, it is known from experiment that non-axisymmetric disturbances 
play an important role in the instability of Taylor vortices. Typically for p = 0 
it has been observed by Taylor (1923), Schultz-Grunow & Hein (1956), Coles 
(1960, 1965), Schwarz, Springett & Donnelly (1964), and Nissan, Nardacci 
& Ho (1963) that with increasing speed of the inner cylinder above the critical 
speed the vigour of the circulation in the Taylor vortices at  first increases, but 
eventually a second critical speed is reached at which the vortices assume a 
‘wavy’ form in the circumferential direction and move with a certain wave 
velocity in that direction. In  the mathematical analysis of this phenomenon 
based on the full non-linear equations, as suggested by Di Prima & Stuart 
(1964), it is necessary to know the crit,ical speeds, amplification rates, and the 
corresponding eigenfunctions for non-axisymmetric disturbances as predicted 
by linear theory. While we will not discuss this phenonenon further in this paper, 
one might call attention to the particularly detailed and complete experimental 
account given by Coles (1965) of the flow development and possible states of 
motion in one particular set of concentric cylinders. 

Thirdly, and most important for the present analysis, are the indications in 
the literature that for p sufficiently negative the critical speed for Couette flow 
may occur for non-axisymmetric disturbances rather than for axisymmetric 
disturbances. The experimental observations in regard to this point are somewhat 
contradictory. Taylor’s (1923) observations for the three sets of cylinders 
7 = 0.74, 0.88 and 0.94 and for a wide range of positive and negative values of 
p indicate that the original instability of Couette flow leads to a symmetric 
flow. However, he does point out that while for p numerically less than a certain 
positive number, which appears to vary with 7, the vortex motion is stable with 
increasing speed of the inner cylinder; for 7 2 0.88 and p < - 1 on the other 
hand, ‘the symmetric rings of coloured fluid which invariably appeared in the 
first instance if the experiment was carefully performed, were found to break 
up shortly afterwards’. Lewis (1928), using sets of cylinders with 7 = 0.53, 
0.70 and 0.76, found in all three cases that for values of p less than approximately 
- 0.4 pulsating motions (non-axisymmetric motions) occurred at  speeds either 
above critical or at critical. ‘There appears to be no consistency in the speeds at  
which the pulsing type of motion sets in; sometimes the motion changed straight- 
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way at the critical speed to the pulsating type.’ Unfortunately it is impossible 
to determine from the data given by Lewis for what particular values of 7 and 
p the latter situation occurred. The observations of Donnelly & Fultz (1960) 
for the case 7 = are in general agreement with those of Taylor. They note that 
at values of - p  between 8 and 1 the cells break up spontaneously within less 
than a minute of formation. They do not discuss the subsequent motion. 

Nissan et al. (1963), using a set of cylinders with 7 = 0.85, have measured 
the critical speed for Taylor vortices and the second critical speed at  which the 
Taylor vortex motion breaks down into a non-axisymmetric motion. With 
decreasing p the value of the second critical speed approaches that for Taylor 
vortices, the two points coinciding at  p = - 0.73. Further, the authors observe, 
‘In all experiments where p was between - 0.70 and - 0.75 only wavy vortices 
could be produced; steady non-wavy vortices were entirely absent.’ Coles 
(1965), using an apparatus with 7 = 0.88 (but with a short axial length compared 
to that of most experimenters), has depicted the Taylor instability boundary 
(singly periodic flow) and a second boundary for doubly periodic flows for a wide 
range of values of p (see figures 2 (a-c) of his paper). In  contrast to the observa- 
tions of Nissan et al. Coles observes that the doubly periodic regime lies above the 
Taylor regime for p = - 1, though extrapolating from figure 2 (b )  it  is possible 
that the boundaries may cross at  p N -3.  However, he noted (p. 399) that for 
opposite rotation of the two cylinders a weak spiral configuration (see figure 15(c)) 
is quite typical of the Taylor instability boundary except a t  low Reynolds 
numbers for the outer cylinder. Snyder (Brown University) in a private com- 
munication has informed the authors that in some preliminary experiments with 
7 = $ he finds that for ,u N - 1 the lowest mode of instability is a non-axisym- 
metric one, apparently a weak helical motion similar to that observed by Coles. 
While there are a number of other experimental papers in which results are 
quoted for negative values ofp, in so far as the authors know there is no additional 
pertinent discussion of the form of the motion that the instability takes. 

In  part these differences in the experimental observations may be due to the 
different geometries, and to the different methods of visualization or measure- 
ment. While the authors are certainly not qualified to discuss such matters, 
we might note, for the record, that Taylor and Donnelly & Fultz used a visual 
technique observing the motion of dye traces. Lewis, Coles, and Nissan, Nardacci 
& Ho used a visual technique, observing the motion of fine aluminium particles 
suspended in the fluid. The latter also observed the flow by dispersing small 
droplets of ethyl alcohol and water in mineral oil, Snyder used a thermistor 
anemometer (see Lambert, Karlsson & Snyder 1964) to detect the vortex motion. 

The mathematical problem of the stability of Couette flow for non-axisym- 
metric disturbances was first considered by Di Prima (1961). Using the Galerkin 
method he solved the resulting eigenvalue problem for the case of small-gap 
(7 --z 1) andp 2 0. The results show, as expected, that the critical speed increases 
with increasing wave-number in the azimuthal direction, the minimum corres- 
ponding to axisymmetric disturbances. A somewhat surprising fact, in view of the 
known stability of the vortex motion for ,u 2 0 and Ip slightly greater than the 
critical value, is that the critical Taylor number for non-axisymmetric disturb- 
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ances is only slightly greater than that for axisymmetric disturbances. That 
non-axisymmetric motions do not occur immediately with increasing T can only 
be explained by considering the full non-linear equations, as has been done by 
Di Prima & Stuart (1964). More recently, the results of Di Prima (1961) have been 
confirmed by the direct numerical calculations of Roberts (1965) who considered 
the case p = 0, but did not make the small-gap assumption. He gives results for 
7 =0.95, 0.90, 0-85 and 0.75. In  all cases the critical Taylor number increases 
with the azimuthal wave-number. Krueger (1962) extended Di Prima’s analysis 
to the case p < 0. His preliminary computations using Galerkin’s method 
indicated that in the small-gap case, for p 21 - 0.8 or less, non-axisymmetric 
disturbances would occur a t  lower Taylor numbers than those required for the 
growth of axisymmetric disturbances. Since these computations were not com- 
plete enough to determine the critical values of the axial and azimuthal wave- 
numbers, the more complete investigation reported here was necessary. The 
preliminary results obtained by Krueger are confirmed by the present analysis; 
for 7 near one and ,u 1: - 0.78 the critical Taylor number occurs for non-axi- 
symmetric disturbances! 

In  $2 the stability problem is derived in the case for which the gap between 
the cylinders is small compared to the radius of the inner cylinder. A numerical 
procedure for solving the eigenvalue problem is described in 5 3, and the results 
of the numerical computations are discussed in 3 4. To check the validity of the 
conclusions concerning the occurrence of non-axisymmetric disturbances 
which are based on the small-gap equations, the full set of linear disturbance 
equations is considered in $5. 

2. The eigenvalue problem 
Let r ,  0, and z denote the usual cylindrical polar co-ordinates, and let u,, U g ,  

and uz denote the components of velocity in the increasingr-, 8- andx-directions 
respectively. Consider two infinitely long concentratic circular cylinders with 
the z-axis as their common axis. Let the radii and angular velocities of the inner 
and outer cylinders be R,, R, and R,, Q2 respectively. The equations of motion 
for a viscous incompressible fluid admit the exact steady solution, Couette flow, 

where 
U, = U, = 0, ue = V(Y) = Ar+(B/r ) ,  (1) 

(2) A = (!& Rg - R1R:)/(Rg - R:), B = ( R, - R2) R:Ri/(Rg - R:). 

To study the stability of this flow we superimpose a general disturbance on 
the basic solution, substitute in the equations of motion and the continuity 
equation and neglect quadratic terms. Since the coefficients in these equations 
depend only upon r ,  it  is possible to look for solutions of the formt 

(3) 

with similar expressions for the other components of velocity and the pressure. In  
order to insure that the solution is bounded as x -+ t- co and single-valued, it is 

t It is understood that when the calculations are completed we take the real part of 
equation (3). 

ue = V(r )  + z)(r) ei(wl+me+hz) 
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necessary that h be real and m be an integer. Without loss of generality, we can take 
m to be zero or a positive integer. The parameter w will, in general, be complex. 

In  this section we will be concerned with the small-gap problem in which the 
gap d = R, - R, is small compared to R, so that terms O(d/R1) can be neglected. 
The derivation of the small-gap equations is essentially the same as for the 
classical Taylor problem, except that now we must consider terms involving 
differentiation with respect to the circumferential co-ordinate 8. In  the limit 
d/R, --f 0 the distance around the cylinders becomes infinitely large compared 
to the gap between the cylinders, and the angular co-ordinate must be replaced 
by a suitable unbounded continuous variable. The proper procedure for doing 
this is as follows. Consider the second momentum equation 

au, au, 
-+L-+... = v 
at r 80 

or by substituting from equation ( 3 )  and neglecting quadratic terms 

i [ ~ + m Q ( r ) ] v +  ... = v - +... , (Z ) 

( 4 4  

where Q(r)  = V(r) /r .  It is natural to use Q, as a reference angular velocity, and 
d as a reference length. Then scaling t in units d2 /v ,  we see that the second term 
in equations (4) is of apparent scale Q,d2/v as compared with other terms in the 
equations. There are two possible limits. The first, with curvature effects com- 
pletely neglected, would correspond to the problem of the stability of shear 
flow between parallel plates, and the Reynolds number R = QIR,d/v would be 
held fixed as d/R, -+ 0. In  this case, if the second term in equations (4) were to 
be retained, then 8/88 would need to introduce a factor (d/R,)-l or equivalently 
m(d/R,) would need to remain finitet as d/R,  -+ 0. In  the second limit, however, 
with which we are concerned, we wish to retain curvature effects. Recall that for 
the classical Taylor problem, while curvature effects are neglected in many places 
when d/R, < 1, they are retained through the centrifugal force terms by requiring 
that the Taylor number T, which is proportional to (Q,R,d/v)2 (d/R,), be held 
fixed as d / R ,  + 0. In this case, if the second term in equations (4) is to be retained, 
then 8/86' must introduce a factor (d/R1)-i or, equivalently, m(d/R,)i must remain 
finite as (d/R,) -+ 0. This scaling has been used by Krueger & Di Prima (1962), 
Bisshopp (1963a), and by Krueger (1962) .  It has also been suggested by Bisshopp 
( 1963 b )  in his investigations of different small-gap limits. 

Thus we introduce the dimensionless variables 

} (5) 
r = R, + xd ,  6 = d/R,, ,u = Q,/Ql, 

a = Ad, cr = wd2/v, k = ( - Q1/4A)*m, T = - 4AQld4/v2. 

Notice, since A = - a,( 1 -,u)/26 plus terms 0(1) ,  we have asymptotically 

k N [6/2(1-p)]*", T N 2 ( 1 - , ~ ) ( Q ~ R , d / v ) ~ 6 ,  ( 6 )  

which more clearly shows the scaling of the azimuthal wave-number and the 

-f Note mB = (rn/R1) (RIB) = as, where a = rn/R,, s = RIB and the wave-number a is 
scaled with respect t o  the gap width d. 
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form of the Taylor number T. Finally, eliminating the perturbations in the pres- 
sure and the axial velocity, letting 

V Q  u = -1~' 
d2A6 ' 

v = R1!2,v', 

where u is proportional to the radial component of velocity;-j- and then letting 
S -+ 0 with a, k, CT,  and T held fixed, we obtain the following sixth-order system 
of homogeneous equations 

L(D2-a2)u = 

Lv = u. 

We have dropped the primes on u and v, and 

L = D2-a2--i[c+kJ(T) Ql(x)], D = d/dx, Ql(x) = 1 -(l-p)x. (9) 

The boundary conditions at  x = 0 and x = 1 are 

u = DU = v = 0. (10) 

Equations (8) are identical with those derived by Krueger (1962). They differ 
by one term from those considered by Di Prima (1961), which are not formally 
correct in the present small-gap limit. However, for the range of parameters 
considered by Di Prima, the term retained is extremely small and does not 
introduce any error in the results quoted there. Notice that while 6 does not 
appear explicitly in equations (8), (9) or (lo), it  plays an important role through 
its appearance in the definition of k. In  our mathematical limit 6 -+ 0,  the wave- 
number k must be treated as a continuous parameter. However, for a given value 
of & <  1 it  has physical meaning only for values corresponding to positive 
integer or zero values of the azimuthal wave-number m. Finally, note that we 
would obtain precisely equations (8) if we had assumed that the disturbance 
velocities were of the form v(r) exp [i(wt + me)] cos hz, i.e. a wave standing in the 
axial direction but travelling in the azimuthal direction. On the other hand it is 
not possible to find solutions of the linearized disturbance equations corre- 
ponding to standing waves in the azimuthal direction. Within the framework 
of the present theory it is of course impossible to decide between travelling and 
standing waves in the axial direction; we will return to this point in $4. 

The homogeneous set of equations (8) with the boundary conditions (10) 
determine an eigenvalue problem of the form 

F(p, a, k, (T, 2') = 0. (11) 

The marginal state is characterized by the imaginary part of ( T , c T ~ ,  equal to 
zero. For a given value of p, which determines the basic velocity up to a scale 
factor, we wish to determine the minimum real positive value of T over all real 
a > 0 and real k 2 0, for which there is a solution of equation (11) with a, = 0. 
This value of T ,  T,(p), is the critical value of T for the assigned value of p. For 
values of T > T,(p) there will exist solutions of equations (8) and (10) for certain 

t This is the same scaling that is used in the classical small-gap problem for axisym- 
metric disturbances. 



Non-axisymmetric modes in $ow between rotating cylinders 527 

values of a and k with  IT^ < 0 and the disturbance will grow exponentially. The 
values of a and k corresponding to Tc(p) determine the form of the critical dis- 
turbance. Note that if the critical value of k is not zero, we must for a given 
geometry (assigned value of 6 1)  look at the discrete set of values of lc corre- 
sponding to m = 0,1,2,  ... to determine Tc(p). For this reason, for an assigned 
value of p, it is necessary to compute the critical value of T for a wide enough 
range of values of k to cover the different possibilities. We will denote by q(p,  k) 
the critical value of T for assigned values of ,u and k. The corresponding value of 
the real part of c, cr determines the frequency of the oscillation. For a fixed 
z the wave will propagate in the direction of the basic flow with an angular 
velocity (in units of Ql) given by c = - wr/mQ2, = - cr , /kJT .  Here r used as a sub- 
script denotes the real part. 

3. Method of solution 
The two-point eigenvalue problem defined by equations (8) and (10) is difficult 

to treat analytically. The system of equations (8) is really a twelfth-order system 
of real equations with variable coefficients. While in theory the Galerkin method 
can be used, it is necessary to take several terms (more with decreasing p) in the 
series for u and V ,  and the complex algebra becomes rather tedious. It is more 
convenient to use direct numerical procedures such as those used by Di Prima 
(1955), Harris & Reid (1964), Sparrow, Munro & Jonsson (1964), and Roberts 
(1965) for similar hydrodynamic stability problems. The procedure has been 
described by Harris & Reid and will only be briefly summarized here. 

Let us first rewrite the system of equations (8) as a system of first-order 
equations: 

} (12) 
DU = V ,  DV = Y+aU,  DW = X ,  

D X  = M ( x )  W +  U ,  D Y  = 2, DZ = -a2T!21(x) W + M ( X )  Y ,  

where M = a '+ i [c~+kJ(T)  S l Z 1 ( ~ ) ] ,  U = U,  V = Du, 

W = v ,X  = Dv, Y = ( O 2 - a 2 ) ~ .  

The boundary conditions at  IL" = 0 and x = 1 are 

u = v =  w=o.  (13) 

A set of three linearly-independent solutions of the system of differential 
equations (12) which satidy the boundary condition at  x = 0 can be constructed 
by imposing the initial conditions 

( O , O , O ,  1 ,0 ,0)  for j = 1, I ( O , O , O , O , O ,  1)  for j = 3. 

(q,T$,y.,Xj,?,.Zj)= ( O , O , O , O , l , O )  for j = 2 ,  1 (14) 

Any solution of the system of equations (12) satisfying the boundary conditions 
(13) at x = 0 can be represented as a linear combination of these three solutions. 
A necessary condition that this linear combination also satisfies the boundary 
conditions U = V = W = 0 at x = 1 is the vanishing of the determinant 

P ( p , a , k , ~ , T )  G (15) 
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This is the required characteristic equation. The marginal state is determined by 
setting a, = 0. For assigned values of p, a and k we wish to determine the mini- 
mum real positive value of T and the corresponding real value of a for which 
equation (15) is satisfied. The minimum of the set of values of T over all real 
positive a determines the critical value of T, T,(,u, k), for the assigned values of 
p and k. 

We proceed as follows. First remember that the solutions 

are complex-valued; hence, equation (15), with a4 = 0, gives two real-valued 
equations of the form 

Q(p, a, k, a,, T) = 0, H ( p ,  a, k, ar, T) = 0. (16) 

To determine a root of these equations for fixed p, a and k, we choose three pairs 
of trial points in the T - a, plane. For each of these three points, the fundamental 
set of solutions Ui are obtained by integrating the system of first-order equations 
(12) by the Runge-Kutta method. Then the functions G and H are evaluated, 
and bivariate interpolation is used to obtain a new approximation to the root 
of equations (16). Iteration is continued until the root is approximated with 
sufficient accuracy. For all the computations reported in this paper the iteration 
process converged when the starting values were in a sufficiently small neigh- 
bourhood of the root. Once the root was determined, the process was repeated 
for a sufficient number of values of a so that the minimum of T with respect to 
a, T,(p, k) could be determined. Quadratic polynomial interpolation with an 
interval in a of 0.02 was used to determine %(put k) and the corresponding values 
of a and a,. Finally, the entire process was repeated for several values of k so 
that a curve of T,(p,  k )  versus k could be drawn for the assigned value of p. 

It is worth saying a few words about the error in the various numerical pro- 
cedures, particularly since for p near - 1 some rather interesting and new results 
are found corresponding to variations in T,(,u, k) with k of 5 % or less. First, 
all computations were carried out in fixed point arithmetic on an IBM1410 
computer with all variables allotted eight integer places and twelve decimal 
places. The determinant P was evaluated by pivotal condensation and the root 
of equations (16) was determined to at  least six significant figures. With these 
precautions, it is estimated that the round-off error is negligible in comparison 
with the truncation error. The truncation error can be estimated by noting that 
the Runge-Kutta method is of order h4, where h is the step size, and then using the 
method of Richardson’s deferred approach to the limit. We assume, of course, 
that the error in evaluating P ( p ,  a, a,, k ,  T) is negligible. Several checks were 
run using step sizes of h = 0.05, 0.025 and 0.0125. For example, for the extreme 
case p = - 1.25, k = 0.79057 and a = 4.20 the corresponding values of T were 
29,727.60; 29,735-14 and 29,735.51 respectively. The extrapolated ‘exact ’ 
values of T using the first two and the last two results are 29,73564 and 29,735.54 
respectively. The results of this and other checks indicate that the maximum 
error in any of the tabulated values of T,, a and a, in table 1 is not more than _+ 2 
in the fourth significant figure, and that a step size of h = 0.05 is satisfactory. The 
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error in most cases is probably considerably less. For the classical Taylor problem, 
( k  = 0, CT = 0) ,  the present results agree with those given by Harris & Reid 
(1964) to within f. 1 in the last digit for a, and through four significant figures for 
T. Finally, as is well known (see Harris & Reid 1964, or Sparrow, et al. 1964) 
there is the danger that, with the large values of T that are found with decreasing 

P 
0 

- 0.75 

- 0.80 

- 1.00 

k 

0 
0.15811 
0.31623 
0.47434 
0.63246 
0.79057 

0 
0.15811 
0.31623 
0.47434 
0.63246 
0.79057 
0~90000 

0 
0.15811 
0.31623 
0.47434 
0.63246 
0-79057 
1~00000 

0 
0.1 1180 
0.15811 
0-22361 
0.31623 
0-33541 
0.44721 
0.47434 
0.55901 
0.63246 
0.79057 

a 

3-127 
3.131 
3.143 
3.163 
3.190 
3.225 

3-406 
3.417 
3.451 
3.514 
3.605 
3.730 
3.842 

3.493 
3.489 
3.499 
3.547 
3.636 
3.769 
4.041 

3.999 
3.941 
3.888 
3.799 
3.690 
3.675 
3.642 
3.647 
3-686 
3.745 
3-940 

TAP9 k )  
3390.1 
3402.5 
3440.3 
3504.8 
3598.6 
3725.6 

10519 
10560 
10726 
11114 
11846 
13099 
14434 

11795 
11783 
11840 
12152 
12888 
14267 
17806 

18669 
18478 
18296 
17970 
17489 
17404 
17129 
17132 
17345 
17810 
19900 

-a, 
0 
4.8534 
9.7661 
14.799 
20.020 
25.505 

0 
5.8138 
11.612 
17.575 
24.090 
31.780 
38.331 

0 
6.3041 
12.376 
18-418 
24.954 
32.763 
47.456 

0 
6.3375 
8.8326 
12.127 
16.235 
17.013 
21-297 
22.316 
25.600 
28.716 
37.115 

C 

0 
0.5262 
0.5265 
0.5270 
0.5277 
0.5285 

0 
0.3578 
0.3546 
0.3515 
0.3500 
0.3512 
0.3545 

0 
0.3673 
0-3597 
0.3522 
0.3475 
0.3470 
0.3556 

0 
0.41 70 
0.4130 
0.4046 
0.3882 
0.3845 
0.3639 
0.3594 
0.3477 
0.3402 
0.3328 

TJPU, k ) l  
TJP,  0 )  
1*0000 
1.0037 
1.0148 
1.0338 
1-0615 
1.0990 

1~0000 
1.0039 
1.0196 
1.0565 
1.1261 
1-2453 
1.3721 

1*0000 
0.9989 
1.0038 
1.0302 
1.0926 
1.2095 
1.5096 

1~0000 
0.9898 
0.9800 
0.9626 
0.9368 
0.9323 
0.9175 
0.9176 
0.9291 
0.9540 
1.0659 

TABLE 1. The critical value of T and the corresponding values of a, ur, and G 

for assigned values of p and k 

p, the solutions Ui of equation (12) will become linearly dependent near x = 1. 
For the range ofp considered here, p > - 1-25, we did not encounter this difficulty. 
A more detailed discussion of the numerical procedures and the error estimates 
can be found in Gross (1964). 

4. Results 
In  table 1 the critical values of T,(p, k )  and a, as well as the corresponding values 

of the dimensionless frequency C T ~ ,  and the dimensionless angular wave velocity 
c = -a,,/kJT are tabulated for p = 0,  -0.75, -0.80, and - 1.0 and a suitable 

34 Fluid Mech. 24 
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range of assigned values of k. (A more complete table (table A) covering the range 
- 1.25 < p < 1 from which figures 1-3 were constructed has been lodged with the 
editor.) The choice of the values of k is such that for any reasonable value of 6, 
say 6 < A, the critical value of T for different values of m can be found by inter- 
polation from the values tabulated in table 1. Also in the last column, the ratio 
T,(p, k)/T,(,u, 0) is given. For p greater than approximately - 0.78, E(p) occurs 

1.20 t 
a= - 0.50 

0.80 
0 1 2 3 4  5 6  

111 

FIGURE 1. The variation of Z'&, rn)/T,(p, 0) with m(S = &) for assigned values of ,u. 

for k = 0, i.e. the critical disturbance is axisymmetric. On the other hand, for 
pless than approximately - 0.78, %(p) occurs for k + 0, indicating that the critical 
disturbance may be non-axisymmetric. 7 In  practice, of course, the determination 
of T,(p) in these cases depends upon the discrete set of values of T,(p, k) corres- 
ponding to the values m = 0,  1,2,3, . . . for the assigned S. However, if T,(,u) occurs 
fork = kc $; 0, it  is always possible by using (see equation (6)) 

S = 2k2(1 -,u)/m2, (17) 

t It is satisfying to note that Prof. Coles, in a private communication, has indicated 
that for a set of cylinders with S = 0.144 the change from closed vortex rings to a weak 
helical structure on the Taylor boundary (see the introduction to the present paper) 
occurs for -p in the range 0.75-0.80. 
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to choose 6 < 1 and m so that the critical disturbance will be non-axisymmetric, 
We will return to this point later in this section. 

To interpret the results in as simple a manner as possible, it  is convenient 
to choose a definite value of 6 say 6 = A, which is a reasonable value for small- 
gap experimental work. We denote the appropriate Taylor numbers (since 6 
is fixed) by G(p, m). In  figure 1, the values of T,(p, m)/T,(p, 0) for different values 
of m with 6 = & are given for several values of p. For convenience the points 
corresponding to each value of p are connected by a continuous curve. Note 

FIGURE 2. The variation of a,(p,m) with m(6 = &) for assigned values of p. 

that for ,u = - 0.80, - 0.90, - 1.00 and - 1.25, the critical value of T corresponds 
to a non-axisymmetric disturbance with 1 , 3 , 4  and 5 waves in the azimuthal direc- 
tion, respectively. The corresponding critical values of a, a&, m) for different 
values of m(6 = &) for assigned values of p are shown graphically in figure 2. 
In  the cases for which non-axisymmetric disturbances occur, the critical value 
of a is less than the critical value of a for an axisymmetric disturbance. Thus 
the axial wavelength, 2nlh = 2nd/a, for non-axisymmetric disturbances will 
be slightly greater than the value predicted for an axisymmetric disturbance 
at  that value of p. 

In  figure 3, the variation of q(p ,  m)/T,(p, 0) with p for assigned values of 
m(6 = &) is shown. For a given value of p, the critical Taylor number is given by 
the lowest point on the set of curves. Thus in the ranges (determined only approxi- 
mately from figure 3) -0.78 < p, - 0.81 < p < - 0.78, -0.84 < p < -0.81, 
- 0.93 < p < -0.84, - 1.13 < p < -0.93, '1 < ,u < - 1-13, the critical Taylor 
number corresponds to disturbances with m = 0, 1, 2, 3, 4 and 5 respectively. 

34-2 
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Hence for fixed S < 1, the azimuthal wave-number m of the critical disturbance 
appears to be a monotone increasing function (though not continuously, of 
course) of -p. Further, with decreasing p, ,LL < - 0.78, the points at which the 
critical value of m jumps discontinuously to the next higher value occur quite 
quickly at  first, but later more slowly. For example, at p = -0.78, m, = 1; 
at p = -0.81, m, = 2; at p = -0.84, m, = 3; but we must go to ,u = -0-93for 
m, = 4.7 

- -  m=O I l-"" 

-1.25 -1.0 - 0 5  0 0 5  1.0 
P 

FIGURE 3. The variation of T,(p,m)/T,(p, 0) with p for assigned values of m(6 = &). 

Now let us return to equation (17). For a fixed value of p < - 0.78, equation 
(17) shows that it is possible to increase the azimuthal wave number of the critical 
disturbance by decreasing 6 and, of course, vice versa. Typically for p = - 1, 
k, = 0.44721 and from equation (17)  6 = 0.800/m$. Thus, corresponding to 
6 = 0.800, 0.200, 0.089, 0.050 and 0.032 we find m, = 1, 2, 3, 4 and 5 respec- 
tively.$ Clearly the first two results are not meaningful since the small-gap 
approximation could hardly be expected to be valid for such values of 6. How- 
ever, the decrease of m, with increasing S is in qualitative agreement with the 
results obtained in the next section using the full linear disturbance equations. 

Of interest are the differences in the critical speed of the inner cylinder for 
axisymmetric and non-axisymmetric disturbances (m = 0, 1, 2, ...) for different 
values of p. For S = &, and p = - 1, the critical value of R = a1Rld/v occurs 
for m = 4 and we have [R,(p, 0) - RJp, 4)] /R,(p7 0) N 0.04, which is a small 
percentage change.$ For p = - 0.8 and - 0.9 the changes are even smaller. Such 
small changes are probably within or nearly within the limits of experimental 
errors for many of the experiments that have been performed. Thus, assuming 

t For other values of 6 similar computations can be made. For an assigned value of ,u 
the values of k corresponding to different values of m are computed and the corresponding 
values of T are determined by interpolation with the use of the entries in table 1. The 
minimum value of T determines the critical value of m for the given values of 6 and p. 

$ For intermediate values of 8, the critical value of m can be determined by the pro- 
cedure outlined in the previous footnote. 

0 A table (table B) of critical values of R for different values of p and m for 6 = &-has 
been lodged with the editor of the Journal, for consultation by interested readers. 
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that the critical non-axisymmetric disturbances are stable for increasing T > T, 
and hence can be expected to exist physically, it may be that they could not be 
detected by critical speed measurements alone. 

While the changes in the computed parameter T are larger, for example 
T,(p)/T,(p, 0) = 0.9175 for p = - 1, nevertheless they are still small enough that 
they could arise spuriously from the small-gap approximation. For this reason 
the full linear disturbance equations are considered in the next section. The 
results confirm the present finding. However, they do show that the small-gap 
approximation, even for 6 = &, introduces rather large, but apparently uniform 
in k or m, errors in the critical value of T for negative values of p. 

Once a root of equation (15) is determined, the corresponding eigenfunction 
can be computed up to a multiplicative constant. For the particular cases 
p = 0, k = 0, 0.15811, and 0.31623; and p = - 1, k = 0, 0.22361, and 0.47434 
the eigenfunctions have been tabulated by Gross (1964). 

For p = 0, the critical Taylor number occurs for k = 0, vr = 0, the correspond- 
ing eigenfunction u(x) ,  v(x) is real-valued, the disturbance is independent of time, 
and we can expect a steady axisymmetric secondary motion (Taylor vortices) 
€or T slightly greater than T,. Assuming that the amplitude of the fundamental 
U(X)COS~Z,  V(X)COS& is A ,  A small, then Davey (1962) has shown that the 
effect of the non-linear terms is to introduce a first harmonic O(A2) and a correc- 
tion to the radial dependence of the fundamental O(AS) and so on. Thus for T 
slightly greater than T,, the solution of the linearized problem at T = T,  gives 
a good description, within a multiplicative factor, of the steady motion that is 
observed. 

On the other hand, for p = - 1,  the critical condition corresponds to k $. 0, 
0;. + 0 and we can expect an unsteady non-axisymmetric secondary motion. 
In  addition, the eigenfunction u ( x )  and V ( X )  is complex-valued and will only be 
determined up to a complex-valued constant which will introduce a phase angle 
in the disturbance. More generally when k + 0 it is impossible, within the frame- 
work of linear stability theory, to distinguish between a solution of the distur- 
bance equations corresponding to a wave travelling in the &direction but stand- 
ing in the z-direction (exp [i(wt + me)] cos hz), and a wave travelling in both the 
B- and z-directions (exp [i(wt +mB + hz)]). Note that in either case there will be 
a phase angle dependent on x since the eigenfunction is complex-valued. In  addi- 
tion, the unknown complex-valued multiplicative factor will introduce an ampli- 
tude and a phase angle. 

The experimental evidence of Coles (1965) and Snyder (private communica- 
tion) indicates that for p 2i - 1 and T slightly greater than T,, there is a weak 
helical vortex motion corresponding t o  a wave travelling in both the 0- and z- 
directions. It is probable that with increasing T above T, several equilibrium 
states are reached, the first being proportional to exp [i(ot + mB + h z ) ]  and the 
last consisting of a number of disturbances which allow the existence of wavy 
vortices such as those observed by Taylor (1923), by Coles (1965) in the regime 
he describes as doubly periodic, and by others. For example, a suitable combina- 
tion of disturbances which are proportional to exp [i(wt + mB)] cos hz and 
exp [i(wt + me)] sinhz can lead to wavy vortices. In  this regard, the generation 
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of the harmonics of the disturbance may play an important role; also disturbances 
with different wave-numbers may appear. To resolve such points it is necessary 
to consider the full non-linear equations. (For the case ,LA = 0 ,  see Di Prima 
& Stuart 1964.) It would be helpful to have more detailed experimental evidence 
concerning the critical state and the subsequent growth of the disturbance 
for ,LA = - 1. We should also bear in mind that in any experimental apparatus 
the theoretical conditions of infinitely long cylinders cannot be realized. 

5. The wide-gap problem 
In  this section we consider the linearized problem for the stability of Couette 

flow with respect to non-axisymmetric disturbances without making the small- 
gap approximation. The notation here is slightly different than in the previous 
sections. The velocity and pressure perturbations, ui, ui, u: andp' are given by 

{ui, ui, 4) = R, Ql(u(x), v(x) ,  w(x)}  exp [i(wt + me + A x ) ] ,  
p' = pvQ,n-(z) exp [i (wt  + m0 + hz)]. (18) 

It is convenient to eliminate the pressure perturbation ~ ( x )  by introducing the 
variable X ( x )  defined by 

n(x)  = D*u(z) - X ( X ) ,  

where D" = d / d x  + C ( X ) ,  C ( X )  = S/( 1 + SX), 6 = d/Rl. (20) 

Then letting Y = D*v and 2 = Dw, and making use of the continuity equation 
to eliminate D*u, we obtain the following system of six first-order equations 

D*u = -imE(x)v-iaw, 

DX = M ( x )  u + 2[imt2(x) - J ( T )  Q*(x)] w, 

D Y = [ M ( x )  + m262(x)] w - iml(x) X + ma<(x) w - 2[imC2(x) - A*JT] u, 

D*Z = [ M ( x )  + a2] w - iaX +am[(x) w, 

M ( x )  = a2 +m2C2(x) + i[a + mJ(T) Q*(x)], 

D*v = Y ,  DW = 2, 

where 

anda, (T, and T are defined in equations ( 5 ) .  
The boundary conditions are u = v = w = 0 a t  x = 0 and 1. 
The set of equations ( 2 1 )  are the same as those considered by Roberts (1965), 

except for changes in notation. However, his calculations are limited to ,u = 0. 
The eigenvalue problem for marginal stability, P(p,  6, a,  m, CT?, T) = 0, can 

be solved in precisely the same manner as that described in §3. Computations 
have been carried out? for y = RJR, = l/(l +S) = 0.95 ( S  = 0*052632), for a 
range of values of p from 0 to - 2, and for p = - 1 for a range of values of 7 from 
0.95 to 0.60. The critical value of T and the corresponding values of m, a, (T?, and 

was used. However, this causes no 
difficulty since the corresponding results for small-gap theory can be found easily by inter- 
polation in table 1 for 6 = 0.052632. Most of the computations for table 2 were done on 
an IBM 709411 at the Bell Telephone Laboratories. 

t Through an oversight 7 = 0.95 instead of S = 
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c = - w,/mR, are tabulated in table 2 .  (A more complete table (table C )  used in 
constructing figures 4 and 5 may be seen on application to the editor of the 
Journal). 

For comparison, the results for E(p,m) using the small-gap equations and 
using the exact equations for 7 = 0.95 are displayed in figures 4 and 5 for p = 0 
and ,u = - 1, respectively. Notice that for p = 0, for which the critical distur- 

7 P rn a T, - 0; C T,ITc@ = 0) 
0.95 0 0 3.128 3509.9 0 1 

-0.80 3 3.561 13730 15.106 0.3591 0.9865 
- 1.0 4 3.680 20072 23.358 0.3641 0.8966 
-1.25 5 3.774 30632 33.102 0.3555 0.8363 
-1.50 6 4.002 45307 43.616 0.3391 0.8056 
-1.75 6 3.986 65411 51.537 0.3504 0.7864 
- 2.0 7 4.483 91298 64.147 0.3310 0.7681 

0.95 -1 4 3.680 20072 23.358 0.3641 0.8966 
0-90 - 3 3-721 23861 26-896 0-3583 0.8789 

0.8736 0.85 - 3 3.847 29130 34.330 0.3341 
0.80 - 2 3.835 36767 33.009 0,3674 0.8833 
0.75 - 2 3.873 46243 40.086 0.3523 0.8717 
0.70 - 2 3.984 60099 48.472 0.3380 0.8665 
0.65 - 2 4.177 81079 58.974 0.3251 0.8681 
0.60 - 2 4.456 114043 72.626 0.3135 0.8775 

TABLE 2. The critical value of T and the corresponding values of 
m, a, cr? and c for assigned values of y and 7 

3750 

3650 

3450 

3350 , 1 2 3 4 
0 

m 

FIGURE 4. The variation of T, with rn for y = 0, 7 = 0.95. ~ , Small-gap 
approximation; ----- , wide-gap. 
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bance is axisymmetric, and for p = - 1, for which the critical disturbance is 
non-axisymmetric, the qualitative agreement between the results using the 
small-gap approximation and the exact equations is excellent. The 'curves' 
for T,(p,m) are almost exactly parallel to each other. On the other hand, the 
correction for gap size can be considerable for p negative even for a value of 
S as small as 0.052632. For p = 0, 7 = 0.95 and m = 0, the ratio of the exact 
value of T, to that computed using the small-gap approximation is 1-04; for 
p = - 1 the corresponding ratio is 1.20. The corresponding curves for a,.(p,m) 

m 

FIGURE 5 .  The variation of T, with rn for p = - 1, 71 = 0.95. - , Small-gap 
approximation; ----- , wide-gap. 

are also nearly parallel, and here the correction for gap size a t  p = - 1 is not 
so significant. (For 7 = 0.95 and ,LL = 0 and - 1, a table (table D) comparing the 
critical values of T, a and c using small-gap theory and using the full equations 
for assigned values of m has been lodged with the editor.) 

The computations using the exact linear stability equations (see table 2) 
show the following: (1) for S small (certainly if 7 > 0.6) and p sufficiently negative, 
the critical Taylor number will correspond to a non-axisymmetric disturbance. 
In  particular, for 7 = 0.95 and p = - 1 the critical disturbance is predicted to 
have an azimuthal wave-number m = 4, which agrees with the prediction of 
small-gap theory. (2) For 7 = 0-95, and undoubtedly for other values of 7, 
the critical value of m is non-decreasing with decreasing p, again in agreement 
with the prediction of small-gap theory. (3) For p = - 1 the critical value of m 
is non-increasing with decreasing 7l (i.e. increasing S), at  least for values of 7 

t This is probably true for any value of p, but is only of interest when p < -0.78, in 
which case the critical disturbance is non-axisymmetric in the limit as 7 + 1, (i.e. S -+ 0). 
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down to 7 = 0.6. The critical value of m jumps from 4 to 3 at about 7 2: 0.918, 
and from 3 to 2 at 7 2: 0.820. It may be possible, by decreasing 7 below 0.6, 
to reach a point a t  which the critical Taylor number would occur for an axisym- 
metric disturbance, i.e. to stabilize the flow to non-axisymmetric disturbances. 
However, we did not investigate this point further. Because of the excessive 
computations involved, no attempt was made to determine a dividing curve in the 
(pq)-plane corresponding to states for which the critical disturbance is axisym- 
metric or non-axisymmetric. 

6. Summary 
It is usually assumed in the literature that the critical Taylor number for the 

stability of Couette flow will correspond to an axisymmetric disturbance. The 
results of this paper show that this assumption is not correct, for sufficiently 
negative values of p = Q,/Q,. The analysis based on the small-gap disturbance 
equations shows that for p less than a value of about - 0.78 the critical Taylor 
number corresponds to a non-axisymmetric disturbance provided that 6 is 
sufficiently small. For p < -0.78 the critical value of the azimuthal wave- 
number increases with decreasing p for fixed 6, and increases with decreasing 6 
for fixed p. The variation is of course not continuous since the azimuthal wave- 
number takes on only integer values. The variation in the critical Taylor number 
for non-axisymmetric disturbances, compared to that for axisymmetric dis- 
turbances, is small. However, the variation as predicted by the small-gap 
theory is confirmed by a consideration of the full linear stability equations. 
On the other hand, the correction for gap size at p = - 1 is quite large, even for 
such small values of 6 as 0-05. When the critical disturbance is a non-axisymmetric 
one, the corresponding wave-number in the axial direction is slightly less than 
for an axisymmetric disturbance (Taylor vortex) for the same values of q and p 
(see figure 2). 

As this work was being submitted for publication, the authors learned in a 
private communication from Snyder, also see Synder & Karlsson (1965), 
that a number of the theoretical results given here had been verified experi- 
mentally. In particular for 7 = 0.958 the secondary motion is axisymmetric 
for p greater than about - 0.766, and non-axisymmetric (apparently of a weak 
helical structure) for p less than this value. In  addition, the wave-numbers in 
the azimuthal direction for different values of p are in remarkably good agree- 
ment with the present theoretical predictions. 

The authors would like to express their appreciation to Dr Trevor Stuart 
for his helpful comments. This work was supported by the Mechanics Branch of 
the Office of Naval Research. While it was being completed, one of us (R. C. D.) 
was the holder of a Fullbright fellowship at  the Weizmann Institate of Science, 
Rehovoth, Israel. 
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